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ABSTRACT 

A Monte Carlo renormalization group calculation of the 3~ function 

in SU(2) lattice gauge theory is presented, using the blocking 

transformation proposed by Swendsen. I outline a strategy for improving 

the action using Monte Carlo methods and present some preliminary 

results. 
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Renormalization, for the lattice regulator as for any other 

regulator, means showing that a theory predicts a unique long wavelength 

physics independent of the details of the cutoff and finding how the 

bare parameters of the theory must be varied with the cutoff to keep the 

long wavelength physics constant. In the Monte Carlo renormalization 

group approach, developed by Ma, Swendsen and Wilson,“’ this is 

achieved by calculating vacuum expectation values on lattices of spacing 

a and Za, and adjusting the bare parameters on the lattice of spacing 2a 

to get the same physics as on the lattice of spacing a. Monte Carlo 

computer simulations must be done on lattices of finite volume; this may 

strongly affect vacuum expectation values. The same physical volume is 

therefore used on both lattices to produce identical infrared effects on 

the quantities being matched. For example, in the calculations reported 

on here, quantities measured on a 4 * lattice of spacing 2a were matched 

to those measured on an 8* lattice of spacing a. 

In principle, quantities directly connected with physics, such as 

glueball correlation functions or the heavy quark potential, can be used 

for matching, but it is difficult statistically to study the long 

wavelength properties of these quantities. Therefore, a renormalization 

group transformation is performed on the 8’ lattice to get a 4’ lattice 

on which each new link is in some sense the average of neighboring links 

on the old lattice. The matching is done between quantities constructed 

of these “block links.” 

The kernel defining the transformation may be chosen arbitrarily. 

A variety of kernels has been suggested for lattice gauge 

theories.“““’ By adding large numbers of terms to the action, equally 

good matching can presumably be obtained using a wide variety of 
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kernels. These various actions, which are equally good in predicting 

physical quantities correctly, will in general differ widely in 

computational simplicity. For example, decimation kernels in spin 

systems are known to lead to effective actions which are very nonlocal 

and hence difficult to use. For subsequent convenience, the kernel 

should be chosen to obtain the simplest possible effective action 

consistent with predicting the physics correctly. It is not to be 

expected that any choice of kernel, no matter how clever or elaborate, 

“ill lead to exactly the Wilson action at finite lattice spacing; this 

would imply that the Wilson action at finite lattice spacing predicts 

physical quantities with no errors due to the finite lattice spacing. 

However, it is desirable to find an effective action which, while 

getting the physics right, is as local as possible. 

In QCD and similar theories, only one combination of operators in 

the action should be relevant at large distances. Therefore, after many 

iterations of the blocking procedure, the same physics should be 

obtained independent of the details of the bare parameters, depending 

only on the coefficient of the most relevant operator. If enough 

renormalization group transformations can be performed on the lattice 

sizes available, the beta function can be calculated by matching 

quantities at very large distance scales without improving the action 

(Swendsen6). In practice, on a finite lattice, some cutoff dependent 

effects will probably remain, even after 2,3, or 4 levels of blocking. 

These must be removed by improving the action, the kernel or both. 

The calculations are done in the following way. Monte Carlo 

simulations are done on an 8’ lattice with an action 
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' = '1 'lattice "1 + ' 2 'lattice 2 u + .*. , 

where the ui are traces of simple loops (possibly in W.PiOUS 

representations of the gauge group) and the coefficients Bi are chosen 

arbitrarily. (I have used Creutz’s’ heat bath procedure for the 

simulations.) Renormalization group transformations are applied to the 

8* lattice to obtain lattices of sizes 4', 2* and 1'. Expectation values 

<Ll!") (n) 
1 > are measured on these blocked lattices, where U. 

1 might be the 

trace of some simple loop at the nth level of blocking. 

A trial run is made on a 4' lattice with new couplings guessed one 

way or another. The discrepancies between quantities at the (n)th level 

of blocking on the 8% lattice and the (n-1)st level of blocking on the 

II* lattice are determined: 

AU.> = 1 <lJ!“)> - <u!n-l )> 
1 8* 1 J+’ f 0. 

The changes in the couplings on the 4 * lattice necessary to correct the 

discrepancies may be estimated by calculating the matrix of d&-ivatives, 

d - <"!"-l) 
dgj 1 

> = <“y’Q uy> - tuj”-‘)> <I vy> , 

and solving the first order equation 

A<U!n-l), = d - ,u(n-l) 
1 d6 i 

j 
> ABj 

for ABj. 
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Another simulation on the 4* lattice with the new Bj may be 

performed and the process iterated if necessary. If the statistics on 

the derivative matrix are good enough, no multiparameter search is 

necessary, even with multiparameter actions.’ 

As a sample calculation, I show results from a one parameter 

matching of the simple plaquette (Wilson) action, using Swendsen’s 

kernel” (the simplest sensible kernel) to define the block variables. 

Results of a matching are shown in Table 1. The data ars from four runs 

of 1536 iterations each on an 8 * lattice at 8=2.5 and four runs of 8092 

iterations each on a 4* lattice at B=2.322. The errors quoted are the 

standard derivations of the four runs. The matching in the upper two 

levels of blocking is impressive, usually within one standard deviation, 

even though no effort has been made yet to optimize the kernel OP the 

action. The matching at the lowest level is poor, as expected, since 

“irrelevant” operators may have large effects at short distance scales. 

From a sequence of such matchings at different couplings 6, a “5 

function” may be calculated. A graph of A6 vs. 5 in the crossover 

region is shown in Fig. 1. At low 6, the loops on the l* lattices (top 

level of blocking) are dominated by finite volume effects and ape 

virtually independent of 6. Hence, a 6 function can be calculated on the 

basis of the middle level of blocking only. The sign and magnitude of 

this 6 function are respectable; it does not match onto the value 

expected from weak coupling perturbation theory at large 6, however. 

There are two possible explanations. One is that the Monte Carlo 

calculation has not been carried to large enough 6 that we should expect 

to recover the perturbative result. A more likely explanation in view 

of the discrepancy in the At?‘s obtained from the top and middle levels 
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Fig. 1: The N(2) 6 function in the crossover region for the Wilson action using the 
Swendsen kernel. A6 for a scale change of 2 is plotted vs. 8. The lines are 
results of matches to middle blocking level data. x's are Prom matches at the 
top level. The dashed line is the two loop perturbative prediction Par A.B. 
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of blocking at the largest value of 8(6=2.7) is that the 8’ lattice is 

too small to allow enough blocking to remove completely the effects of 

the irrelevant operators. In fact, the shape of the graph resembles 

that obtained in analogous calculations for the O(3) spin model. F0r 

this model, Shenker and Tobochnik ’ Pound that they were able to match 

onto the weak coupling results by performing the simulations with an 

improved three-term action, optimized to remove the effects of the 

leading irrelevant operators in weak coupling. Recently, Hasenfratz, 

Hasenfratz, Heller and Karsch ” have been able to achieve this matching 

in a simpler way. Using weak coupling calculations they find an 

improved kernel which leads to a more local effective action and allows 

good matching using only the most local term in the effective action. 

Analogous perturbative calculations must be performed for the gauge 

theory and the Monte Carlo calculations must be carried to large enough 

6 that the two methods can be matched. 

In addition to these essential weak coupling calculations, one 

would like to have purely nonperturbative means for determining optimum 

renormalization procedures. In practical Monte Carlo calculations in 

the crossover region, “asymptotic” scaling of dimensionful quantities 

with 6 according to the weak coupling formula is often used as a test 

for the absence of finite lattice spacing effects. However, 

nonperturbative contributions to the 6 function may cause deviations 

from asymptotic scaling in this region even if finite a effects are 

small (that is, even if the renormalization transformation is nearly 

perfect. 1 On the other hand, when the size of the links becomes much 

larger than the size of the hadronic physical states, the description of 

the physics in terms of colored quark and gluon fields, while 
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mathematically possible, most likely becomes very awkward. Crazily 

nonlocal actions may be required to represent accurately the hadron 

physics. In ref. 9, a breakdown in matching at high temperatures was 

observed in the O(3) spin model using an action improved by weak 

coupling methods. A change of variables to fields connected with the 

physical states at large distance scales may be appropriate.” It is 

desirable to determine nonperturbatively the deviation of the optimized 

renormalization procedure from the weak coupling results and the 

possible breakdown oP the simple procedure. 

In the remainder of the talk, I would like to investigate the 

extent to which an improved action may be calculated at intermediate 

coupling by Monte Carlo methods. A different strategy is required for 

this than for the B function calculation. For the 6 function, it is 

best to match quantities calculated at the largest scale possible, to 

minimize the effects of the irrelevant operators. But statistical 

errors are worst at large distance scales, making it difficult to find 

and remove the suppressed effects of the irrelevant operators. On the 

other hand, at the lowest level of blocking, statistics are very good 

and the effects of the irrelevant operators are not attenuated. A very 

large number of very irrelevant operators which have negligible effect 

on any larger distance scale may be important at very short distances. 

Attempting to match the effects of these operators with a small number 

of parameters in the action may get wrong the operators relevant at 

larger distances. A strategy for matching with a finite number of 

parameters is thus: try the matching at a scale such that a small number 

(1. 1) of irrelevant operators are visible over the statistics. Tree 

diagram calculations suggest that a matching with a finite number of 
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parameters may be possible at the second level of blocking but not at 

the lowest level. A crucial consistency condition for this type of 

approach is that the results of the matching get the physics right at 

all larger distance scales. 

As an example, I will show the results of a two parameter matching 

of the second level block loops on the 8% lattices from table I. The 

two terms in the action are the plaquettes and the flat six link loops: 

S- BIEUp + E2EU,. The plaquette and the flat six link loop at the 

second blocking level are used to fix the parameters in the action. Two 

questions must now be answered. First, can a statistically meaningful 

result be obtained at all from the data? It may appear from table I 

that no discrepancy in the middle level is mot-e than about one and a 

half standard deviations, and that therefore the discrepancies are 

meaningless. This is, in Pact, not true. The errors in the various 

loops are very highly correlated, and the Pact that, for example, the 

flat six link loop in the 4 * lattices is a little high compared to the 

plaquette is very stable, run after run. A careful analysis oP the 

errors in the 6’s obtained is required and was done in the following 

way. Appropriate 6’s giving the desired matching were obtained by 

inverting the derivative matrix Prom a guessed starting place, as 

described above. From this new starting point, a sequence of three runs 

on the 4’ lattice was made. Each of these was compared with each of the 

four separate runs on the 8’ lattices, and the small corrections in 6 

necessary to achieve matching were calculated Por each of the 12 

combinations. The spread in 6’s obtained is shown in Fig. 2, and yields 

B1 = 2.95 r .12 and B2 = -.162 ? .035. Note from the graph that one 

combination of the 6’s has a dominant effect on the physics and is known 
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Fig. 2: Couplings obtained by matching a two parameter action on a 4’ lattice to the 
data at the middle blocking level on an 8* lattice at 5-2.5. The circle is the 
original action on the 8% lattice. The x is the renormalized coupling ~-2.322 
from a one parameter fit on a 4* lattice. The twelve dots are the results of a 
two parameter fit on a 4% lattice from various combinations of runs. 
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almost perfectly, while the other combination is poorly determined. 

Even so, the coefficient Rz of the six link loops can be obtained to an 

accuracy of 20%. 

The second question to answer is, if the procedure yields good 

statistics, does it also yield good physics; does this fit help or hurt 

the fit of all other loops, especially these at highest blocking level? 

Table II contains some of the results from the one parameter fit of 

table I plus results for the two parameter fit just described. The 

quantities that were badly off in the one parameter fit now are in good 

agreement, about 15, while the quantities which agreed well before are 

still in agreement. For comparison, results from a two parameter fit to 

data at the lowest blocking level are also included. Fits at this level 

are trivially easy to do; the statistics are great on both the 

expectation value and the derivative matrices. However, eve” though the 

fit at the lowest level is very easy and works well at that level, the 

matching at the higher blocking level is terrible, for reasons explained 

above. 

In summary of the results obtained so far: 1) Long wavelength Monte 

Carlo renormalization group matching is pretty good (though not perfect) 

even using a nonoptimized blocking transformation and a one parameter 

plaquette action. 2) Multiparameter MCRG matching of short wavelength 

data is very easy, but may well get the long wavelength physics wrong. 

However, it is possible with existing computing power to get useful 

information about nonleading operators from intermediate wavelength 

data. 
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There are two types of ultimate goals for these calculations, 

fundamental and practical. Showing the renormalizability of lattice 

regulated QCD by direct calculation and recovering the weak coupling B 

function i3 of tremendous fundamental importance, even though we believe 

we know how the results of those calculations will turn out when they 

succeed. In addition, calculation of the 5 function in the intermediate 

coupling region may be very useful in interpreting scaling tests of 

phenomenological calculations. Beyond this, there is the open question 

of whether improved actions may ultimately be of any direct practical 

use in reducing finite lattice spacing errors more efficiently than 

simple lattice spacing reduction in phenomenological calculations. For 

the pure gauge theory at weak enough coupling this is almost certainly 

the case. For small a, finite lattice spacing errors go like 

c,a2Az+c a’A’+ ‘( . . . , where a is the lattice spacing, A is the QCD scale 

and Ci depend on the quantity being considered. Reducing the lattice 

Spacing by a factor of two costs a factor of 16 in CPU time (times an 

unknown factor for “critical slowing down”) and reduces the finite a 

errors by about a factor of four. If the a2A2 term in the errors can be 

removed by using a three loop action, costing perhaps a factor of eight 

over the plaquette action in CPU time (times another unknown factor), 

this reduces finite a errors by a factor of azA2. At small enough a, the 

second procedure is almost certainly the most efficient. At the 

intermediate lattice spacings at which present day calculations are 

done, however, the answer is not obvious. An improved quark action, on 

the other hand, may be quite practical, even at intermediate coupling. 

The mason is that quark calculations employ relaxation algorithms. It 

may therefore be possible to use the simplest fermion action to get a 
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good approximation to the propagator, and to use the expensive extended 

action for finishing touches. Furthermore, it makes sense to consider 

improving the quark action before improving the glue action. The lowest 

dimension “missing” operators for the quarks are of dimension five 

rather than dimension six. At intermediate coupling, locality may be a 

more sensible classification scheme than dimension of operators; again, 

the operators which can be added to the quark action are more local than 

those which can be added to the glue action. 

I have enjoyed conversations with Anna Hasenfratz, Michael Peskin 

and Steven Shenker. 
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